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Heat exchange of a circular cylinder with surrounding gas flow was studied in detail in
[1-3]. The temperature and Nusselt number were obtained to an accuracy of Pe? for low finite
Peclet and Reynolds numbers in [2, 3]. Heat exchange of noncircular cylinders has not been
considered previously. The present study will examine heat exchange of an elliptical cylin-
der with a gas flow perpendicular to the cylinder generatrix.

We will consider the temperature distribution T; along the cylinder surface to be homo-
geneous (T{ = const). We consider the case Pe <« 1 and low relative temperature differen-
tials T in the cylinder-gas flow system (|Tj — T|/T <« 1).

To find the temperature distribution T in the gas flow we will solve the Ozeen equation,
which, as was shown in [2, 3], gives a valid zeroth approximation for T:

ugrad 7 = y divgrad T (1)
with boundary conditions '
T=17T; on the cylinder surface (2)
T =7, at infinity,

where % is the thermal diffusivity. It is easiest to perform the solution in an elliptical
coordinate system, related to the Cartesian coordinates by the following expressions:

z=cchicosn, y=-cshisiny,

where c is the ellipse focus distance. Transforming from the dependent variable T to the
dimensionless variable t = (T — To)/(T; — T'w) and performing the substitution ¢ = exp [(k/a)(z cos

1o + ¥ sin ny) lv, from Eqs. (1) and (2) we arrive at the simpler system:
‘Zi% + 'a—z% 4 (ke/a)? (cos® ) — ch?) v = 0; (3)
98
v(Es, M) =exp [—(k/a)(a cos 1y cos  — b sin 1 sin n)], %)
v—>0 for &->o0,
where g and b are the major and minor semiaxes of the ellipse; k = %%:.—%Pe ;s To is the angle

formed by the velocity u, with the major semiaxis q. We obtain as a solution for Eq. (3) an
expression for the function v = v, 1)

=3 (yn Cekn (%) con (1)-+ g Sekn (%) sen (n))s
n=0
counss (1) = 3 AZH cos (2r + i) mp

=0

Segnti (M) = 2 Biriisin (2r + 1) my )
70
Cekanti (8) = 3 At Kot (k-;- ch a),
r=0
Sekgnys (8) = thE X, (2r + i) BZ?ﬂ(k%ch g),
r==0
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where K, is a modified Bessel function of the second sort [4];'Yn and w, are arbitrary con-
stants which can be found from the boundary condition on the cylinder surface. Substituting
Eq. (5) in Eq. (4}, expanding the exponential in a Fourier series, and separating even and
odd terms, we obtain four independent infinite algebraic systems of equations for determina~-
tion of Yan, Yan+:, Wzn and wanpkil

[z

Eﬁ Yan Cekondir = (2 — 8or) Iyr (2) cO3 2r; (6)

3 tants Cobpnts A = — 2 () 005 (2 + 1) 0 )

u}:_:}o Ogn i1 Sekon 1 BIiL = — 205r1y (2) sin r + 1) @; (8)

3 OuntaSekin BEH = 2Usnsa () sin (2 £ 2) @, | )
F=0, 132 ..., 8 = (é :;8)

where

Cek, = Cek,(3,); Sek, = Sek,(&y); z = (k/a)}/a* cos® 1, + b* sin® n;

¢ = arccos (& cos 1),/ a* cos? 1, -+ b* sin’ 7).

Analysis of the behavior of the Matier functions introduced in Eq. (5) at low k values
makes possible determination of the order with respect to this parameter of the coefficients
for the unknown y, and w, [4]:

Cek,A) ~ Ink, Cek,ig A7 ™ ~ Sek, 1, BI 2" ~ |77, (10)
Cek,_9n A7 ~ Sek,_y, Bi 3" ~ IR,
We use Cramer's rule to solve Egqs. (6)—(9). It follows from evaluation of Eq. (10) that in
the determinants composed of the coefficients of the unknowns, the product of the diagonal
elements is much larger than the remaining terms. The determinants obtained by replacing the
first columns by a column of free terms have the same property. Calculation of the subsequent
unknowns yq and wy becomes more complicated with increase in n, although for an estimate it is

sufficient as before to compare the product of the diagonal elements of corresponding deter-
minants. As a result, the following expressions are obtained:

7% = ln (4a/ky(a + b)) 1 + OF?), (11)
pal = O™, lo,| = 0F™) (n=1),

where ln y(=0, 5772...) is Euler's constant. Neglecting in Eg. (5) the terms proportional to
k, we obtain for k <1

v == yy Ceko(E) cey(n),
t =~ v, exp [(k/a)(c ch & cos ng cos m - ¢ sh § sin 1y sin )] Cek,(E) cey(n).

The heat flux removed from (delivered to) a unit cylinder length is found from the
expression

Qr = —ME’S(n grad T — Tun/y)ds, (12)

where % is the thermal conductivity coefficient; n is the external normal to the curve along
which integration is performed. The simplest form of Eq. .(12) occurs as § — oo:
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2n

Qr = % (T; — Tw) S exp [(ke/2a) exp (E) cos {n — M), [(kc/2a exp (&) cos (1 — ny) v — i—g] dy.
J w»

Integrating, we obtain

P | 13
Qr = 2nx (T; — T.) 20 [\’n ",',A COS ANy - Wy ,&, Br*l sin (2 - 1) 1, l (13)
n== 7= r=Q ’

_In the case of small Peclet numbers Eq. (13) transforms to
Qr = 2nx(T; — Tw)yo = Nux(T; — Tw)l/2a, 14)

where Nu is the Nusselt number. Substituting Eq. (11) in Eq. (14) and transforming from k
to the Peclet number, we obtain for the Nusselt number

Nu = (4na/l)[In (16a/Pe y(a -+ b))~ (15)
where I is the length of the ellipse periphery. As b/a -»0 (case of a lamina) Eq. (15)
tends to the limit lim Nu = x(In(16/Pey))™ in the limiting case of a circular cylinder

bia-0
(a = b) Eq. (15) transforms to the expression presented in [l]: Nu = 2(In (8/Pe y))~'. It
follows from Eq. (15) that in the approximation taken at Pe <1 the heat flux removed from
the cylinder surface is independent of cylinder orientation and is determined only by the

value of Pe and the semiaxis ration b/a.

Curves of Nu as a function of Pe and € = b/a are shown in Figs. 1 and 2. 1In Fig. 1
curves 1-3 are constructed for £ = 0.1, 0.5, and 1, respectively. In Fig. 2 curves 1-3 are
constructed for Pe = 0.01, 0.05, and 0.1, respectively.
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